Q&A: What can microfluidics do for stem-cell research?

نویسنده

  • Marie Csete
چکیده

Stem-cell biology and microfluidics have both been hotbeds of research activity for the past few years, yet neither field has been able to successfully commercialize a clinical 'killer application'. Stem-cell behavior is exquisitely sensitive to environmental cues, and the important cues are difficult to establish, manipulate and quantify in traditional cell culture. Because the microenvironment can be controlled in microfluidics platforms, micro-fluidics has a lot to offer stem-cell biology and there are many good reasons for the fields to join forces. What exactly is microfluidics? Microfluidics is the characterization and manipulation of fluids on the nanoliter or picoliter scale. The behavior and properties of fluids change as amounts decrease from the macroscale (volumes used for everyday applications) to the microscale. This means that microfluidic devices cannot be built by simply scaling down macroscale devices. For instance, at low microliter volumes, fluids act more like solids, and two fluids flowing alongside each other in a microchannel will not mix well (except by diffusion); therefore, a variety of techniques (pumps, valves, electrokinetics) are used in microfluidics platforms to actuate mixing and fluid flows. Most microfluidics applications in research labs concen trate on the 10 to 100 μm scale, basically the diameter of a single cell. Microfluidics lab-on-a-chip devices allow standard laboratory analyses, such as sample purification, labeling, detection and separation, to be carried out automatically as the sample is moved, via microchannels, to different regions of a chip. Various methods have been used to produce microfluidic devices, but inkjet printers offer an easily accessible way of printing channels and other features directly onto the device. This technique has been used to print precise patterns of proteins or protein gradients onto a surface on which cells can subsequently be cultured to investigate or control their behavior. A technically more advanced use of microfluidics is the integration of microchannels with nanoelectrospray emitters for preparing material for mass spectrometry in high-throughput proteomics analyses of biologic samples [1]. What background do you need for microfluidics? Physics (in particular fluid dynamics), mechanical engineer ing, or bioengineering backgrounds, the common feature of these being a strong mathematical foundation. On the one hand, scientists working on the development of pluripotent stem cells for clinical use are encountering a major challenge in scaling up cell cultures for master banks to be used as sources of cell therapies for large numbers of patients. Microfluidics is clearly not the answer to this …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What are Stem Cells?

  Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organ...

متن کامل

Applications of Microfluidics in Stem Cell Biology.

Stem cell research can significantly benefit from recent advances of microfluidics technology. In a rationally designed microfluidics device, analyses of stem cells can be done in a much deeper and wider way than in a conventional tissue culture dish. Miniaturization makes analyses operated in a high-throughput fashion, while controls of fluids help to reconstruct the physiological environments...

متن کامل

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

Molecular approaches to diagnosis of invasive aspergillosis what we know and what we do not know.

Invasive aspergillosis (IA) are a major complication in immunocompromized patients where can be serious and rapidly fatal. Early diagnosis and early appropriate antifungal treatment is important in reducing mortality and morbidity. But despite many efforts to develop detection methods, the diagnosis of IA still remains challenging and current conventional methods are limited for adequate diagno...

متن کامل

Regenerative Medicine: Highlight on the Significance of Therapeutics with Novel Strategies

Background: There is a worldwide effort to present novel approaches for the development of tolerance-induction treatments in regenerative medicine, after years of investigation in clinical transplantation. Particularly, novel approaches are based on controlling the immune response, including the application of biomaterials or imitation of antigen-specific peripheral tolerance in either solid-or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010